One Hundred Thirty-One Brown Dwarfs

Hi Everyone!

We’ve been so busy following up your discoveries that we have fallen behind in our blogging.  Here’s a long overdue update on the project.

First some numbers.  You have now performed more than 6 million classifications!  That’s right; please ignore the “Backyard Worlds: Planet 9 Statistics” link on the Backyard Worlds main page.  That only shows you a few months’ worth of classifications. The total number of classifications since we launched is much bigger.

You have submitted 32,810 sources via the Think-You’ve-Got-One form(s).  Adam Schneider has done one pass through this list to confirm these sources, check for objects that have not been previously published, and check for duplicates.  We also have a group of superusers separately working their way through this list to look for new solar system planets (e.g. planet nine). We haven’t discovered a planet yet, but we are getting familiar with the variety of false positives that we need to understand, and there is still at least 2/3 of the sky left to search in this mode.

These submissions boil down to 1305 objects that are on our follow-up list: mostly brown dwarf candidates.  These objects feed what has become a vast follow-up program with telescopes in the north (Keck, Apache Point Observatory, IRTF, Mont Megantic), the south (Magellan, Gemini, SOAR) and in space (Hubble and Spitzer). Of these candidates, we have confirmed and classified 70 T dwarfs and 61 L dwarfs by taking their spectra and comparing them against spectra of known brown dwarfs, for a total of 131 spectroscopically confirmed brown dwarf discoveries.   And that doesn’t include our most recent Magellan run, which took place over July 4 weekend.

The T dwarfs and L dwarfs teach us about brown dwarf demographics and formation processes when they are nearby, and indeed 55 of our brown dwarfs and brown dwarf candidates are within a distance of 20 parsecs from the Sun.  This group also contains exotic objects such as co-movers, and color outliers, which tell us about brown dwarf ages—and thereby brown dwarf masses.  We are working on writing a paper about a very rare co-mover submitted by Sam Goodman: a pair of brown dwarfs that appear to orbit one another.

We’ve also been focusing lately on the reddest and coldest, the Y dwarfs.   These are the objects that overlap with exoplanets in terms of temperature and mass; only 27 examples are currently in the published literature. We can spot many of our Y dwarf candidates using the WISE images; we consider those with W1–W2 colors (or color limits) greater than 2.7 magnitudes to be Y candidates. So far, roughly 100 of our objects meet this criterion to be considered Y dwarf candidates. 

YDwarfCandidates
How do you tell if you have a Y dwarf on your hands?  Well, Y dwarfs are at least 10 times brighter in the WISE W2 band than in the W1 band. This plot shows the ratio of the flux in the WISE 1 band to that in the WISE 2 band. If you think in magnitudes like an astronomer, this  ratio works out to be a difference, since magnitudes are logarithms. That’s the y axis of this diagram.  The yellow dots show known Y dwarfs; the grey dots show our candidates, which all sit above a W1-W2 “color” of about 2.5.

These Y dwarf candidates generally need more photometry (measurements of their brightness) at various wavelengths to constrain their temperatures and solidify our interpretation of them as Y dwarfs.  In our first round of Spitzer photometry, we observed 65 Y candidates and we easily confirmed 3 of these as Y dwarfs.  An additional 15-20 are either Y0 or late T based on the Spitzer data; we’ll need to take spectra to sort it out.  We’ve since won a second round of time—13 hours—on the Spitzer space telescope to observe 33 more of these sources, and we’ve also been observing them at shorter wavelengths with the CPAPIR camera on Mont Mégantic.  These discoveries will all be part of a paper probably within the next year.

We’ve started a new astrometry project!   “Astrometry” just means measuring the positions of targets on the sky, i.e. their Right Ascension and declination and how they change over time. Astrometry of nearby objects like brown dwarfs is important because a series of accurate position measurements reveals the object’s distance (though “parallax”) and its dynamical relationship to other objects in the Galaxy (via “proper motion”).   To do this project, we’ve teamed up with Davy Kirkpatrick and the “CATWISE” team, who have also been scouring the WISE images for brown dwarfs.  We’ll be using the Spitzer Space Telescope, and prioritizing the coldest objects.

And (surprise!) it turns out that BackyardWorlds.org is good for finding interesting white dwarfs.  You probably saw our paper on the coldest and oldest white dwarf with a debris disk.  We have since taken a spectrum of a second white dwarf, also discovered by Melina Thévenot, using the Apache Point Observatory. The spectrum implies that this white dwarf probably also has an infrared excess.  Stay tuned for more details!

Keep up the good work!!    You’ve already taken this project in directions we never anticipated and made more discoveries than we imagined.  And did I mention that the WISE mission that provides all the images we look at is STILL TAKING DATA?

Congratulations to Vinod Thakur, Peter Jalowiczor, Tadeas Cernohous, Hugo Durantini Luca, Giovanni Colombo, Sam Deen, Andres Stenner, Melina Thévenot, Les Hamlet, Nikolaj Stevnbak Andersen, Sam Goodman, Dan Caselden, Jörg Schümann, Guillaume Colin, Paul Beaulieu, Karl Selg-Mann, Tamara Stajic, Austin Rothermich, Billy Pendrill, Ken Hinckley, Christopher Tanner, Rosa Castro and Bob Fletcher for finding confirmed L and T dwarfs! Congrats to Guillaume Colin, Sam Goodman, Dan Caselden, Billy Pendrill, Nikolaj Stevnbak Andersen, Les Hamlet, Jörg Schümann, Ken Hinckley, Melina Thevenot, Austin Rothermich, Karl Selg-Mann, and Christopher Tanner for finding Y dwarf candidates…stay tuned!

Thank you for all your hard work so far…and good luck!  And if you are a Facebook person, there’s a new Facebook Group for NASA citizen science that might interest you.  Come join the Sciencing with NASA group and help teach new people about Backyard Worlds: Planet 9!

Best,

Marc Kuchner and the Backyard Worlds: Planet 9 Science Team.

Advertisements

Guest Blog Post by Peter Jalowiczor

(One of our volunteers, Peter Jalowiczor, gave a talk about Backyard Worlds: Planet 9 at his own astronomy club.  Today’s informative blog post is his report about the experience. Did you know that brown dwarfs get smaller the more massive they are?  Read on. -Marc)

I had the pleasure to give a talk at one of the UK’s leading Astronomical Societies: the MSAS (the Mexborough and Swinton Astronomical Society). The society is situated ~20 km from Sheffield (pop, 570,000) in England and was founded in 1978.  Every Thursday evening is a great social occasion centred on a lecture.  At least once a month, some academic visits the society to present on an aspect of Astronomy. Academics really enjoy visiting and describe this place as an Aladdin’s cave as may be seen by some of the photos!

2018 146 MSAS Presentation
The first slide of Peter’s presentation.

The evening was divided-up into two parts consisting of two completely different presentations. One sent by Marc specially for the occasion and the other prepared weeks in advance by myself. They turned out to complement each other perfectly (thank you Marc!). You’re welcome, Peter! -Marc

  1. The First Presentation

I started with an introduction to the Science team and the important fact that Planet Nine is presumed to exist. It is estimated to be around 10 Earth masses, on an elliptical orbit, averaging a=700 AU because of visible disruption in the orbits of detached Kuiper Belt Objects. Next, the nearest neighbours to the Sun were discussed with examples of these BD systems and the prizes of participating in BYW:P9 included discovering such objects.

The flipbook was introduced followed by examples of what to mark and what not to mark: the submissions procedure. How this would be related to the Astronomical software/ procedures described in the second presentation blended both presentations ideally.

The successes of BYW:P9 include the discovery of a T Dwarf in the first few days of the project!

2018 166 MSAS Presentation
Members of the Mexborough and Swinton Astronomical Society, enjoying Peter’s presentation, and thinking up tough questions (see below).
  1. The Second Presentation

I started with a comprehensive description of brown dwarfs, with the three main categories and their associated spectral classes; this culminated in a review of the mass-radius relationship from solar-type stars to the terrestrial planets (G. Chabrier et. al., 2008). A chart demonstrated the decrease (compression) of BD radii with mass before the critical mass is reached as a BD turns into a star. After this point the radius increases dramatically. The positions of L, T and Y objects and sub-BD objects was discussed down to Jovian mass.

MassRadiusdiagram
Mass-radius diagram for planet, brown dwarfs and low-mass stars, from Fortney, Baraffe and Militzer 2014.  More massive brown dwarfs are slightly smaller than less massive ones.

 

Second, I a gave detailed description of the 2MASS project and the WISE mission, the wavebands in which the detectors operated and the positions of the IR bands on the electromagnetic spectrum. 2MASS: j=1.235um, h=1.662um, k=2.159um. WISE: W1=3.4um, W2=4.6um, W3= 12um, W4=22um. I showed that WISE goes much deeper than 2MASS into the Mid-Infrared.

Third, I gave a complete overview of the astronomical tools used: the Backyard Worlds: Planet 9 flipbook, which is at the heart of the project, SIMBAD, VizieR, IRSA Finderchart and BYE Tools (Wiseview).

Fourth, I showed a home video of how everything comes together.

Fifth, I described the project’s results by showing a presentation of the spreadsheet that has been built-up. I described how the photometry of 2MASS and WISE come into this, i.e., W1-W2, J-W2 and how these differences can be used to constrain the spectral types of objects. I referred to photometric Brown Dwarf classification charts from Skrzypek, N., et al.,

I showed clips from Backyard Worlds: Planet 9 Hangouts to demonstrate the international calibre of this project, which put on a completely different light on everything.

Illustration of the spectral coverage provided by the DustPedia database, showing filter response functions of all bands for which we present data. As can be seen, the data we employ effectively provides complete sampling of over five orders of magnitude in wavelength. Response functions of the bands for which we present both imagery and aperture-matched photometry are traced with solid lines. Bands for which we present supplementary external photometry are traced with dashed lines. Bands for which we present imagery only are traced with dotted lines.
The spectral bands used by 10 different survey telescopes. 2MASS (blue) and WISE (leftmost greeen) are the surveys we use in Backyard Worlds: Planet 9.

And finally!

  • The principle aims of the project are to discover Brown Dwarfs and Planet Nine. Red Dwarfs are a secondary target and are being catalogued.
  • Volunteers are encouraged to distinguish real celestial objects from image artefacts in data from NASA’s WISE mission
  • roughly 5 million classifications of images from NASA’s WISE telescope.
  • 432 objects of interest for the follow up campaign, mostly newly discovered BD candidates. We now have more than 500!  -Marc
  • Planet Nine has remained elusive, as have Planet X and Tyche (instruments are sensitive to gas giants out to about 50,000 astronomical units from the Sun).

Peter Jalowiczor

There was also Question and Answer Session at the end of the lecture.  I’ve attempted to answer some of the questions. –Marc

Q: What causes the ‘ghosts’/artefacts in the images?

A: Though the optics in the WISE telescope are first rate, they are not perfect; some black surfaces are not perfectly black, and some transparent optics are partly reflective.  As a result, the light from particularly bright stars can create secondary images from bouncing around more than, ideally, it should.  Those appear as artifacts and ghosts.  –Marc

Q: The candidates submissions procedure. If it is listed in a Red Dwarf catalog. There seemed to be contradiction in what I said and what seemed to implied by the project. (e.g. I don’t submit a candidate if it is listed in a Red Dwarf catalog in VizieR). Whereas there could be objects listed in Red Dwarf catalogues that are misclassified? Should such objects be submitted or not? It would save time for the user.

A: The rule is: if it’s moving and it’s not in SIMBAD (and not a ghost or star or other artifact), please submit it to the Think-You’ve-Got-One form. Sorry for the confusion!  -Marc

Q: Brown Dwarfs or Brown Dwarves? One member picked-up on this after I used this (I was using Brown Dwarfs). It turns out that Dwarfs is American English and Dwarves is British English. I was ‘instructed’ to write properly!

A:  I’m no expert on British English, but perhaps you could consult with the Extrasolar Planets and Brown Dwarfs group at the University of Hertfordshire

Thank you, Peter, for being such a compelling ambassador for Backyard Worlds: Planet 9, and for composing this delightful blog post. –Marc

BYWP9 Peter Jalowiczor
Pete at his computer working on Backyard Worlds: Planet 9.

Snow White and the Seven New Confirmed Brown Dwarfs

It is now winter here in the northern hemisphere, and we’re expecting snow on Friday in Washington, DC.  But fear of snow doesn’t stop us from going observing…and observing we have been!   Jonathan Gagne returned from his last trip to the telescope with spectra of nine of our brown dwarf candidates—and seven of them are now bonafide brown dwarfs.  That brings the total number of brown dwarfs discovered by the project to eight, when you add in our first confirmed brown dwarf from earlier this year.  Thanks to Ellie and Eileen for helping with the observations, which they performed using the Folded-port InfraRed Echellette spectrometer prism on the Magellan telescope!  And a big congratulations to Sam Goodman, Les Hamlet, Guillaume Colin and Dan Caselden for submitting these candidates that are now confirmed!

The spectral types of the new brown dwarfs are: T0,T2.8, T5, T6, T6.5, and two T8s.  (WISEA 1101+5400, which we discovered earlier, is a T5.5).  Curious how we tell the spectral type from the spectrum?  We make plots like this one, below.  The black curve is one of the new spectra from Magellan, and the colored lines are other brown dwarfs with known spectral types, ranging from  T4 to T8.  Which one do you think matches best?

BYW_J004143.14-401924.3_tc_1 cropped

Yes, it’s a T8, and it’s currently the coolest brown dwarf we have found with Backyard Worlds: Planet 9, with a temperature of around 750 Kelvin (about 890 degrees Farenheit). The other two objects turned out to be cool subdwarfs, a kind of star that is poor in iron and other metals, suggesting it formed before the most recent generations of stars enriched the galaxy with these metals.  Those are poorly understood and interesting in their own right.

This new batch of confirmed brown dwarfs contained a few surprises for use. Three of them are strangely bright in the K band; we’re not sure how to interpret that yet.  Also, one of the brown dwarfs initially seemed like it might be a member of the AB Doradus moving group, based on its proper motion.  Its spectrum looks very similar to that of GU Psc b, a planetary-mass T dwarf in that AB moving group.  But Jonathan took a higher resolution spectrum of it, and the new spectrum showed that our brown dwarf wasn’t in the moving group after all.  Close call!

This new batch is still just the beginning for our follow-up program. First, we have  half a night on the TripleSpec instrument on the ARC 3.5 meter at the Apache Point Observatory on January 6, thanks to a proposal led by Katelyn Allers.  Then, we have two nights using the ARCoIRIS spectrograph on the Victor Blanco 4 meter telescope coming up on March 1+2 thanks to a proposal by Jackie Faherty. By the way, our sister citizen science project, Disk Detective, also won observing time on ARCoIRIS, for April 1+2 to follow up debris disk candidates, so we might do some trading between the two projects. And we have two more proposals for observing time still pending—and a list of now 337 brown dwarf candidates to follow up this winter and beyond.

So stay tuned—and have a super holiday, wherever your backyard may be!  (And yes indeed, “brown dwarfs” is not spelled like “dwarves”.)

–Marc

 

 

Our First Paper: the Discovery of Brown Dwarf WISEA 1101+5400

Our first paper was published in the Astrophysical Journal Letters, Volume 841, Number 2 on May 24.   Hooray!!   (It may be easier to read here.)

The paper announces the discovery of our first brown dwarf, shows a spectrum we took of the brown dwarf, and describes the Backyard Worlds: Planet 9 project. There’s a press release from the American Museum of Natural History, a nice NPR story about it featuring Rosa Castro, and several other news stories.

Of course, this paper is already out-of-date.  In the time it took to write the paper, you’ve discovered at least twelve more good brown dwarf candidates.  And we used those discoveries to make an even better estimate of the sensitivity of our search than the one that appears in the paper. But let’s talk more about the paper and our first discovery, a source called WISEA 1101+5400 which we now know is a real brown dwarf, spectral type T5.5.   Here is WISEA 1101+5400’s flipbook.

You may recall that shortly after launch, we were all excited about a faint dipole/mover, which Bob Fletcher had flagged on talk and Tamara Stajic reported on the Think-You’ve-Got-One form.  That’s WISEA 1101+5400.  A few weeks later, science team member Jackie Faherty nabbed a spectrum of it using NASA’s Infrared Telescope Facility.  Here’s a nice plot of the spectrum, created by science team member Joe Filippazzo comparing the our object’s spectrum (black) to the spectrum of another T5.5 brown dwarf (red).  It’s a great match! The extra wiggles in our spectrum are simply noise.

Figure3.cropped

The quality of the match demonstrates that WISEA 1101+5400 is indeed a brown dwarf, and tells us that its temperature is in the range 900-1500 Kelvin (1200 – 2200 degrees Fahrenheit).  We can tell the temperature range by looking at what molecules show up in the spectrum.  The spectrum shows features associated with water, methane, iron hydride, potassium, and molecular hydrogen, labelled above.  If the brown dwarf were hotter or cooler, the relative sizes of the dips in the spectrum from each molecule would be different.

Knowing the brown dwarf’s spectral type also teaches us roughly how bright it is, intrinsically.  And since we know that the brightness of an astronomical object falls off as the inverse distance to it, squared, we can compare our images of WISEA 1101+5400 to those of other brown dwarfs to estimate its distance:  roughly 34 parsecs or about 111 light years.  For comparison, the closest known brown dwarf is the binary Luhman 16AB at 6.59 light years.

So what does this discovery mean for our understanding of brown dwarfs?  Well, there are already a few hundred T dwarfs known–and this new one turns out to be somewhat run-of-the mill.  It’s not super cool, and it’s not in a moving group, for example.  Its infrared colors are close to the average colors for brown dwarfs with this spectral type.  So we haven’t shattered any paradigms or broken any records with this object just yet.

But the discovery is a dramatic proof-of-concept.  Just the fact that we found it, only six days after launch, shows that we’re on the right track toward lots more discoveries.  Also, Zooniverse founder Chris Lintott tells me that our paper now holds the record for fastest publication from a Zooniverse project.   How cool is that?

This is a moment to celebrate.  Congratulations to us!!   Let’s make some more discoveries and write some more papers together.

Marc

We’re up to twelve brown dwarf candidates now, plus one real verified brown dwarf!

Hey everyone!  It’s proposal season here at NASA.  Every spring, NASA offers astronomers opportunities to apply for grant funding to do their research, and we’ve been busy taking advantage of that, writing proposals.

In the meantime, you’ve been hard at work, discovering stuff.  We’re up to twelve brown dwarf candidates now plus one real verified brown dwarf.  Holy smoke!  We can estimate their spectral types based on their relative flux in the WISE 1 and WISE 2 bands (3.5 and 4.6 microns), and it looks like we have 7 new candidate L dwarfs and five new candidate T dwarfs. We’re going to try to get spectra for as many of these as we can.

In the meantime, did I mention we’ve been writing proposals? Well in a proposal, you try to make predictions about what you’re going to be able to learn or discover. You also try to show how your work compares to other work in the field. So we started by taking all thirteen objects and putting them on a plot, showing their proper motions and magnitudes in the WISE 2  (W2) band. Those are the red stars on the plot below, which was made by science team member Jonathan Gagne.

PM_relW2_BYW

Then, as you can see, we plotted lots of other interesting stuff on here.   For starters, we did our best to add all the brown dwarfs that were previously known.  The little blue dots show every other brown dwarf in this database, which is every brown dwarf we could find in the literature.  You can see right away that our discoveries, the red stars, fall towards the bottom of the cloud of blue dots made by the other discoveries.  So our discoveries are fainter than average.

Next, we plotted some lines indicating the detection limits of some other recent surveys, by Adam Schneider et al and by Davy Kirkpatrick et al. (That’s Adam Schneider from our science team.) Those are the two biggest brown dwarfs searches made using WISE before we began ours. The survey done by Schneider et al. only detected brown dwarfs that fall above the orange dashed line. The survey done by Kirkpatrick et al only detected brown dwarfs that fall above the black dash-dot line.  Those lines slant upward to the right because the WISE images they used were not divided into as fine time slices as ours, so some faster moving objects got blurred out.

Finally, we added some green lines showing what we think are the limits of Backyard Worlds: Planet 9.  Now this part is harder since our survey, of course, isn’t complete yet. But we do know more or less what the shapes of the curves should be.  We know that they slant up on the left side of the plot because that’s where the motion is too slow and the images of a moving object start self-subtracting.  And we know that the objects we have already detected, the red stars, must lie above the lines.  So we draw the curves and shift them around till they hug the bottom of the cluster of red stars—and that’s our best guess at our detection limits.

Note that there are two green lines.  That’s because WISE spent more time making images at higher latitudes (here the symbol, beta, means latitude), so our survey is a bit more sensitive there.  There’s only one brown dwarf candidate that’s up at a high latitude where this effect comes into play, though—it’s the one sitting on the lower green line.

So there we have it: a prediction for the sensitivity of our search.  We will spot any brown dwarfs that fall above the green lines (pick the right one based on latitude).  And we are the first to make an all-sky survey of the region above the green lines and below the orange and black lines.  (A few brown dwarfs are already known in this region, but they came from surveys that only covered relatively small portions of the sky).

Now, remember that this plot uses logarithmic scales!  Each of the big ticks on the x axis is a factor of 10. Each magnitude  (the y axis) represents a factor of about 2.512. So that space on the plot could contain lots of brown dwarfs and other interesting objects, especially at high proper motions.  Good luck!

Marc Kuchner

 

More Discoveries: New Candidate L Dwarfs!

Good work, everybody!  You’ve submitted at least five good newly discovered candidate L dwarfs on the Think-You’ve-Got-One form.

Let’s talk about L dwarfs.  The L spectral type contains object with temperatures in the range of about 1400-2200 Kelvin.  It was first established in 1999 by Kirkpatrick et al.. They chose the letter “L” because it is next to “M” in the alphabet; M was the coolest spectral type in the literature at the time, and “N” was already taken to describe a class of evolved stars.  Amazingly, L dwarfs are about twice as common as main sequence stars. They are just harder to spot because they are so much more faint and red.

The first L dwarf discovered was GD 165B, found by Becklin & Zuckerman in 1988.  Curiously, 165B orbits another special kind of astronomical object: a white dwarf.  Nowadays, about 1300 L dwarfs are known.  So discovering one new one doesn’t usually merit a paper on its own.  But when we collect a batch of 50 or so we will definitely want to announce them with a publication, especially if one or more turn out to be in moving groups of young stars.   For example, here’s a recent paper by our own Adam Schneider announcing the discovery of 47 new L dwarfs, including seven that are in young moving groups.  Membership in a moving group is important because it establishes the objects age.

A good clue that you might have an L dwarf is if it doesn’t appear in the DSS images, only in 2MASS and WISE.   That’s because the DSS images were taken in visible wavelengths, and L dwarfs are too cool to shine in visible light, so they only show up in 2MASS and WISE bands, which are infrared.   (T and Y dwarfs may not even show up in the 2MASS images). Just remember, the rule of thumb is that if it’s not in SIMBAD, we want to see it on the Think-You-ve-Got-One form.  There are still interesting objects to find that are in DSS images.

Here’s one of the ones you found.  It’s a great test for the eyes!

Ldwarf.x2.y1

It’s a faint bluish dipole. Can you spot it in this flipbook?  If not, scroll down to the answer key at the end of this article.

Here’s another one.  Remember, each one of these is a real new discovery–not a recovery of an object that was known before!

Ldwarf.x7.y6

Can you see it there?  Here’s a third on to challenge yourself with.

Ldwarf.x4.y1

OK here’s one more for you to test your skill on…

Ldwarf.x6.y4

Ignore that giant blinking blue ghost in the middle!  They are tough to spot.  If you need help, here are the answers, below.  Congratulations to @Andy_Arg,  @karmeliet,  @graham_d,  @stevnbak, and @NibiruX for their exceptional eyesight And keep up the good work, everybody!!

LdwarfFinder

Marc Kuchner

The Colors of Cold Brown Dwarfs

You may have heard of the spectral sequence, OBAFGKM.  What may be less well-known is that new brown dwarf spectral classes have been added in the past few decades. Now the full spectral sequence is OBAFGKMLTY, where the O stars are the most luminous, most massive, and hottest stars, while Y dwarfs are the lowest-mass, faintest, and coldest objects.
While the temperature drops through the MLTY spectral sequence, the chemistry occurring in the atmospheres of theses objects changes dramatically.  This can be seen most clearly when looking at the spectra of these objects.  The figure below shows what happens to the infrared spectra of objects spanning the MLTY spectral classes.  On this figure, we have also marked the positions of the WISE filters (W1 and W2).  Note that how bright each spectral type is in each filter changes. This is seen most dramatically in the Y dwarf, where almost no flux is emitted in the W1 filter and a relatively large amount of flux is emitted at W2.  This is because large amounts of methane are present in the atmospheres of T and Y dwarfs, and methane absorbs light in the wavelength range covered by W1, and there are no absorbing sources at W2.

ModSeq
Spectra of five different brown dwarfs with different temperatures and spectral classes. (credit: Michael Cushing)
We can look at how this difference between W1 and W2 changes as a function of spectral type by finding their “color”.  In astronomy, “color” refers to the difference in brightness of an object at different wavelengths.  So when we look at the W1-W2 color of objects, large values mean that an object is much brighter at W2 than W1.  The next figure shows how WISE colors vary with spectral type.   The coldest objects, T and Y dwarfs, have very distinct WISE colors.
w1w2
Colors of Brown Dwarfs in the two WISE bands we use at Backyard Worlds: Planet 9.
In fact, the WISE filters were built specifically to exploit this color difference in cold brown dwarfs.  Thus, the WISE images of a very cold brown dwarf will show nothing in W1 and a bright point source in W2 (third figure).  This is why some objects look orange in our WISE images. The mover example in the field guide is a good example of an orange-looking brown dwarf.
YdwarfWISE
Cool brown dwarfs can be much brighter in the W2 band.

The WISE colors of Planet 9 have been estimated to be very different than the colors of brown dwarfs.  This is why the point source in the Planet 9 simulation in the field guide looks blue.

Adam Schneider